

"Being the best we can be"

Science Curriculum Plan

2022-2023

Levendale Curriculum Intent Statement

At Levendale, the curriculum is based on a carefully considered progression of transferable skills and knowledge acquisition from 3-11. The Levendale Curriculum is tailored to our local area and context, allowing children to acquire relevant knowledge and skills whilst allowing them to appreciate the historical and cultural importance of both their local area and other areas of the country and world. Children are encouraged to develop life skills that can be applied in a wide range of disciplines to prepare them to make a positive contribution to society.

Our curriculum fosters a deep-rooted love of learning through developing the key skills of questioning, investigating and evaluating. Children are encouraged to be resilient and increasingly independent learners in all areas; they demonstrate positive attitudes to learning and apply key skills in multi-disciplinary areas through meaningful links across curriculum areas. Children develop a base of secure factual knowledge through appropriate support and challenge for all.

Learning experiences should be stimulating, engaging, purposeful, relevant and accessible to all, taking account of prior learning and giving all children the opportunity to consolidate and embed their understanding and knowledge across all subject areas. Children should be encouraged to develop an appreciation and understanding of the world in which they live, at both local, national and global levels. The curriculum should be responsive to individual and/or cohort need, taking into account changes at local, national and global levels. Children should depart from Levendale in Y6 having had the opportunities and experiences necessary to take responsibility for their own learning at KS3 and beyond whilst being willing and able to make positive contributions to wider society. Children should be encouraged to fulfil their potential and be given the opportunities to do so, whether in curriculum areas, through extra-curricular provision or through established links with other agencies or individuals.

Assessment is used to form meaningful and relevant judgements on a child's progress and attainment at regular points throughout the year. Assessment, both formative and summative, informs planning and provision, addresses gaps in learning where these are evident and offers support and challenge where required.

Science Curriculum Intent Statement

Science teaching has a significant role to play in encouraging children's natural curiosity and understanding of the world around them. It should develop this inquisitive nature and encourage children's questioning of how and why things happen. Science should provide children with the knowledge and skills required to find ways to answer their questions.

At Levendale, our intent is to deliver a science curriculum that inspires and excites our children through an engaging practical-based curriculum. We aim to increase pupils' knowledge and understanding of our world, and to develop the skills associated with science as a process of enquiry. Along with developing the natural curiosity of the child, it should encourage respect for living organisms and the physical environment and provide opportunities for critical evaluation of evidence.

At Levendale, in conjunction with the aims of the National Curriculum, our science teaching offers opportunities for children to:

- develop scientific knowledge and conceptual understanding through the specific disciplines of biology, chemistry and physics
- develop an understanding of the processes and methods of science through different types of scientific enquiry that help them to answer scientific questions about the world around them
- be equipped with the scientific knowledge and skills required to understand the uses and implications of science, today and for the future
- develop the essential scientific enquiry skills to deepen their scientific knowledge.
- use a range of methods to communicate their scientific information and present it in a systematic, scientific manner, including ICT, diagrams, graphs and charts
- encourage children to focus on the work of great scientists, to use and apply a growing bank of scientific vocabulary and to understand how science can be used to explain what is occurring, predict how things will behave, and analyse causes.
- develop a respect for the materials and equipment they handle with regard to their own, and other children's safety
- ensure that all children are exposed to high quality teaching and learning experiences, which allow children to explore their outdoor environment and locality, thus further developing their scientific enquiry and investigative skills
- ensure that all children develop an understanding of how their body works and how to stay healthy
- develop an enthusiasm and enjoyment of scientific learning and discovery

The National Curriculum will provide a structure and skill development for the science curriculum being taught throughout the school, which can be linked, if appropriate, to other topics being taught in school.

In the EYFS we understand that Science begins with children's very first acts of exploration. We ensure that we provide a stimulating and engaging environment (both indoors and outdoors) which encourages children's scientific enquiry. The teachers in the EYFS develop children's understanding of the world and trigger curiosity through the use of open-ended questioning.

Children have weekly lessons in science throughout Key Stage 1 and 2, using various programmes of study and resources. Teachers are familiar with previous and subsequent year groups' content which enables them to link to prior learning and build on previous knowledge. They are also aware of where a unit of work fits in across the curriculum - we believe this is essential in ensuring key knowledge is taught and assessed to maintain progression through the curriculum.

Teachers aim to nurture a love for the natural world, excitement for future possibilities in science and provide opportunities for creative investigations and problem solving. They develop children's curiosity and inspire them to pursue scientific enquiry. They also develop children's awareness of opportunities for careers within science and other STEM industries.

Additional opportunities are provided in science, such as Children Challenging Industry in Y6, British Science Week, visitors coming to support particular lessons in the curriculum due to their expertise, visits to Conyers School in Y4, 5 and 6 for science lessons, science quiz competitions and educational visits linked to the science curriculum.

ELG: The Natural World	Children at the expected level of development will: - Explore the natural world around them, making observations and drawing pictures of animals and plants; - Know some similarities and differences between the natural world around them and contrasting environments, drawing on their experiences and what has been read in class; - Understand some important processes and changes in the natural world around them, including the seasons and changing states of
	world around them, including the seasons and changing states of matter.

	What does this look like in EYFS?			
Intent	The frequency and range of children's personal scientific experiences increases their knowledge and sense of the world around them. Children are taught scientific concepts and knowledge through real life experiences and contexts where possible. They listen to a broad selection of stories, non-fiction, rhymes and poems that foster their understanding of our culturally, socially, technologically and ecologically diverse world and learn about scientific figures of importance. As well as building important knowledge, this extends their familiarity with words that support understanding across domains. Enriching and widening children's vocabulary will support later reading comprehension.			
Implementation	Understanding the world involves guiding children to make sense of their physical world and their community. Children explore the scientific world around them through investigation and experimentation and real life situations or contexts. They learn that:- That there are changes in the natural world through the seasons; That there are similarities and differences in the natural world. That there are key words/vocabulary associated with science; That the world is made up of different animals and plants; There are important processes and changes that happen; Use a range of Scientific equipment to help them develop their lines of enquiry. How science is used to help us.			
Impact	Children think of themselves as scientists. They use scientific vocabulary to talk about the seasons, changes over time, similarities and differences They are able to correctly identify several plants and flowers found in their locality			
Curriculum Goal	EXPLORE the natural world.			

National Curriculum 2014

The 'Working Scientifically' elements of the National Curriculum set out a skills framework that our curriculum delivery aims to promote.

	WORKING SCIENTI	FICALLY: STATUTORY REQUIREMENTS		
	KEY STAGE ONE	LOWER KEY STAGE TWO	UPPER KEY STAGE TWO	
QUESTIONING	Asking simple questions, recognising they can be answered in different ways	Asking relevant questions, using range of scientific enquiries to answer them Using straightforward scientific evidence to answer questions or support findings.	Planning range of scientific enquiries to answer questions, recognising and controlling variables where necessary	
OBSERVING	Observing closely using simple equipment	Making systematic, careful observations, taking accurate measurements Using a range of equipment, including thermometers and data loggers	Taking measurements, using a range of scientific equipment, with increasing accuracy and precision, taking repeat readings when appropriate	
EXPERIMENTING	Performing simple tests	Setting up simple practical enquiries, comparative and fair tests	Using test results to make predictions to set up further comparative and fair tests	
CLASSIFYING	Identifying and classifying	Gathering, recording, classifying and presenting data in a variety of ways to help in answering questions	Recording data and results of increasing complexity using scientific diagrams and labels, classification keys, tables, scatter graphs, bar and line graphs	
APPLYING	Using observations and ideas to suggest answers to questions	Using results to draw simple conclusions, make prediction, suggest improvements raise further questions Identifying differences, similarities or changes related to scientific ideas processes	Reporting and presenting findings from enquiries, including conclusions, causal relationships and explanations of and deg of trust in results, in oral and written form such as displays and other presentations	
RECORDING	Gathering and recording data to help in answering questions	Recording findings using simple scientific language, drawings, labelled diagrams, keys, bar charts, and tables Reporting on findings from enquiries, oral and written explanations, displays or presentations of results and conclusions		

Our Science curriculum coverage across KS1 and KS2 is as follows:

	Autumn Term Spring Term		Summer Term	
EY				
Year 1	Animals including humans / Ourselves / Plants	Materials / Plants/ Seasonal Change	Plants / Animals including humans	
Year 2	Uses of Everyday Materials / Animals including humans / Plants	Animals including humans / Living things and their habitats		
Year 3	Animals (skeleton/muscles) / Rocks and soils	Forces and magnets / Animals (nutrition)	Plants / Light	
Year 4	States of matter	Living things and their habitats / Sound	Electricity / Animals including humans	
Year 5 Properties and changes of materials		Earth & Space / Forces	Animals / Living things and their habitats	
Year h Light / Electricity / CCl 0		Living things and their habitats / Evolution & inheritance	Animals including humans	

Objective coverage

YEAR 1

<u>Plants</u>

- Identify and name a variety of common wild and garden plants, including deciduous and evergreen trees.
- Identify and describe the basic structure of a variety of common flowering plants, including trees.

Animals, including humans

- Identify and name a variety of common animals including fish, amphibians, reptiles, birds and mammals
- Identify and name a variety of common animals that are carnivores, herbivores and omnivores
- Describe and compare the structure of a variety of common animals (fish, amphibians, reptiles, birds and mammals, including pets).
- Identify, name, draw and label the basic parts of the human body and say which part of the body is associated with each sense.

Everyday materials

- Distinguish between an object and the material from which it is made.
- Identify and name a variety of everyday materials, including wood, plastic, glass, metal, water, and rock.
- Describe the simple physical properties of a variety of everyday materials
- Compare and group together a variety of everyday materials on the basis of their simple physical properties.

Seasonal Changes

- Observe changes across the four seasons
- Observe and describe weather associated with the seasons and how day length varies.

YEAR 2

Living Things and their habitats

- Explore and compare the differences between things that are living, dead, and things that have never been alive
- Identify that most living things live in habitats to which they are suited and describe how different habitats provide for the basic needs of different kinds of animals and plants, and how they depend on each other
- Identify and name a variety of plants and animals in their habitats, including microhabitats
- Describe how animals obtain their food from plants and other animals, using the idea of a simple food chain, and identify and name different sources of food.

<u>Plants</u>

- Observe and describe how seeds and bulbs grow into mature plants
- Find out and describe how plants need water, light and a suitable temperature to grow and stay healthy.

Animals, including humans

- Notice that animals, including humans, have offspring which grow into adults
- Find out about and describe the basic needs of animals, including humans, for survival (water, food and air)
- Describe the importance for humans of exercise, eating the right amounts of different types of food, and hygiene.

Uses of everyday materials

- Identify and compare the suitability of a variety of everyday materials, including wood, metal, plastic, glass, brick, rock, paper and cardboard for particular uses
- Find out how the shapes of solid objects made from some materials can be changed by squashing, bending, twisting and stretching.

YEAR 3

<u>Plants</u>

- Identify and describe the functions of different parts of flowering plants: roots, stem/trunk, leaves and flowers
- Explore the requirements of plants for life and growth (air, light, water, nutrients from soil, and room to grow) and how they vary from plant to plant
- Investigate the way in which water is transported within plants
- Explore the part that flowers play in the life cycle of flowering plants, including pollination, seed formation and seed dispersal.

Animals, including humans

- Identify that animals, including humans, need the right types and amount of nutrition, and that they cannot make their own food; they get nutrition from what they eat
- Identify that humans and some other animals have skeletons and muscles for support, protection and movement.

<u>Rocks</u>

- Compare and group together different kinds of rocks on the basis of their appearance and simple physical properties
- Describe in simple terms how fossils are formed when things that have lived are trapped within rock
- Recognise that soils are made from rocks and organic matter.

<u>Light</u>

- Recognise that they need light in order to see things and that dark is the absence of light
- Notice that light is reflected from surfaces
- Recognise that light from the sun can be dangerous and that there are ways to protect their eyes
- Recognise that shadows are formed when the light from a light source is blocked by a solid object
- Find patterns in the way that the size of shadows change.

Forces and magnets

- Compare how things move on different surfaces
- Notice that some forces need contact between two objects, but magnetic forces can act at a distance
- Observe how magnets attract or repel each other and attract some materials and not others
- Compare and group together a variety of everyday materials on the basis of whether they are attracted to a magnet, and identify some magnetic materials
- Describe magnets as having two poles
- Predict whether two magnets will attract or repel each other, depending on which poles are facing.

YEAR 4

Living Things and their habitats

- Recognise that living things can be grouped in a variety of ways
- Explore and use classification keys to help group, identify and name a variety of living things in their local and wider environment
- Recognise that environments can change and that this can sometimes pose dangers to living things.

Animals, including humans

- Describe the simple functions of the basic parts of the digestive system in humans
- Identify the different types of teeth in humans and their simple functions
- Construct and interpret a variety of food chains, identifying producers, predators and prey.

States of matter

- Compare and group materials together, according to whether they are solids, liquids or gases
- Observe that some materials change state when they are heated or cooled, and measure or research the temperature at which this happens in degrees Celsius (°C)
- Identify the part played by evaporation and condensation in the water cycle and associate the rate of evaporation with temperature.

<u>Sound</u>

- Identify how sounds are made, associating some of them with something vibrating
- Recognise that vibrations from sounds travel through a medium to the ear
- Find patterns between the pitch of a sound and features of the object that produced it
- Find patterns between the volume of a sound and the strength of the vibrations that produced it
- Recognise that sounds get fainter as the distance from the sound source increases.

<u>Electricity</u>

- Identify common appliances that run on electricity
- Construct a simple series electrical circuit, identifying and naming its basic parts, including cells, wires, bulbs, switches and buzzers
- Identify whether or not a lamp will light in a simple series circuit, based on whether or not the lamp is part of a complete loop with a battery
- Recognise that a switch opens and closes a circuit and associate this with whether or not a lamp lights in a simple series circuit
- Recognise some common conductors and insulators, and associate metals with being good conductors.

YEAR 5

Living things and their habitats

- Describe the differences in the life cycles of a mammal, an amphibian, an insect and a bird
- Describe the life process of reproduction in some plants and animals.

Animals, including humans

• Describe the changes as humans develop to old age.

Properties and changes of materials

- Compare and group together everyday materials on the basis of their properties, including their hardness, solubility, transparency, conductivity (electrical and thermal), and response to magnets
- Know that some materials will dissolve in liquid to form a solution, and describe how to recover a substance from a solution
- Use knowledge of solids, liquids and gases to decide how mixtures might be separated, including through filtering, sieving and evaporating
- Give reasons, based on evidence from comparative and fair tests, for the particular uses of everyday materials, including metals, wood and plastic
- Demonstrate that dissolving, mixing and changes of state are reversible changes

• Explain that some changes result in the formation of new materials, and that this kind of change is not usually reversible, including changes associated with burning and the action of acid on bicarbonate of soda.

Earth and space

- Describe the movement of the Earth, and other planets, relative to the Sun in the solar system
- Describe the movement of the Moon relative to the Earth
- Describe the Sun, Earth and Moon as approximately spherical bodies
- Use the idea of the Earth's rotation to explain day and night and the apparent movement of the sun across the sky.

<u>Forces</u>

- Explain that unsupported objects fall towards the Earth because of the force of gravity acting between the Earth and the falling object
- Identify the effects of air resistance, water resistance and friction, that act between moving surfaces
- Recognise that some mechanisms, including levers, pulleys and gears, allow a smaller force to have a greater effect.

YEAR 6

Living Things and their habitats

- describe how living things are classified into broad groups according to common observable characteristics and based on similarities and differences, including micro-organisms, plants and animals
- Give reasons for classifying plants and animals based on specific characteristics.

Animals including humans

- Identify and name the main parts of the human circulatory system, and describe the functions of the heart, blood vessels and blood
- Recognise the impact of diet, exercise, drugs and lifestyle on the way their bodies function
- Describe the ways in which nutrients and water are transported within animals, including humans.

Evolution and inheritance

- Recognise that living things have changed over time and that fossils provide information about living things that inhabited the Earth millions of years ago
- Recognise that living things produce offspring of the same kind, but normally offspring vary and are not identical to their parents
- Identify how animals and plants are adapted to suit their environment in different ways and that adaptation may lead to evolution.

<u>Light</u>

- Recognise that light appears to travel in straight lines
- Use the idea that light travels in straight lines to explain that objects are seen because they give out or reflect light into the eye
- Explain that we see things because light travels from light sources to our eyes or from light sources to objects and then to our eyes
- Use the idea that light travels in straight lines to explain why shadows have the same shape as the objects that cast them.

<u>Electricity</u>

- Associate the brightness of a lamp or the volume of a buzzer with the number and voltage of cells used in the circuit
- Compare and give reasons for variations in how components function, including the brightness of bulbs, the loudness of buzzers and the on/off position of switches
- Use recognised symbols when representing a simple circuit in a diagram.

Skills and knowledge progression

The continuum below outlines the developmental progression of skills and knowledge across our Science curriculum.

The colour bands correspond approximately to the following year groups:

ΕY	Y1	Y2	Y3	Y4	Y5	Y6

OBSERVATION AND	ENQUIRY, PREDICTION,	DATA COLLECTION	RECORDING
CONCLUSION	TESTING		
Make simple	Enjoy finding out about	Join in – e.g. leaf	Draw what interests
observations	things	collections	them
Make observations	Perform simple tests	Recognise that	Record what they have
Talk simply about what	using simple equipment	scientific ideas are	seen or done in different
they see	– e.g. a timer	more than guesses,	ways, including drawing
Answer simple	Talk about some	and based on evidence	and labelled diagrams
questions about what	reasons why things	Collect data when	Record some information
they see	might happen, or why	asked – e.g. a weather	onto a pre prepared
Describe simple features	something has	station	chart
with simple vocabulary-	happened	Count data sets – trees	Label objects according
parts of the body, a tree	Understand basic safety	in a field	to simple criteria
Observe closely using	rules when testing out	Sort data within given	Record things they have
simple equipment to	their ideas	criteria – tall trees, wet	seen or done from
help them – e.g.		days, blue eyes	memory
magnifying glass		Remember and recall	
		information	
		Underline important	
		facts	
Answer questions using	Find things out, with	Gather and record data	Begin to use cause and
evidence	help and suggestions	to help in answering	effect in their
Ask questions about	Begin to make	questions and	explanations, and some
what they see	predictions about what	understand why this is	scientific vocabulary
Make relevant	might happen	important	Use simple tables and
observations	Understand key factors	Use tallies to count in	charts
Give simple reasons and	that make a fair test	surveys	Identify, classify and use
explanations for what	Use simple apparatus	Use books to find	bulleted lists
they have seen	effectively and safely	information	Make sketches of their
Identify simple parts of			observations Use line
what they see – e.g.			graphs to present their
petal, leg			findings

OBSERVATION AND CONCLUSION	ENQUIRY, PREDICTION, TESTING	DATA COLLECTION	RECORDING
Choose what	Identify features of a fair	Use books and other	Record and label
observations to make	test and carry out a fair	sources of information	sketches and diagrams,
Know that questions can	test with help	Begin to suggest ways to	sometimes with notes
be answered in different	Think of questions to ask	collect data	Use ICT to record results
ways	during testing	Recognise the	Begin to plot points for
Compare what	Decide on approaches to	importance of data	simple graphs
happened to what might	answer questions and	collection	Record systematically
have happened and give	suggest own ideas	Make suggestions about	Record a series of
simple explanations	Select suitable	how to collect data	observations in different
Make a precise series of	equipment	Use graphs to find and	ways
observations and	Suggest improvements	interpret patterns	
measurements	in their work		
Classify simple features	Predict before testing		
–flower, tree	Begin to repeat		
Examine closely and	observations and		
question what is seen	measurements		
Make systematic and	Decide on the best	Recognise the	Use a range of scientific
careful observations and	approaches for enquiry	importance of the	conventions
comparisons	Make predictions based	evidence collected	Understand and begin t
Compare observations	on scientific knowledge	Compare and identify	use both quantitative
over time	Describe or show how to	data patterns	and qualitative data
Categorise observations	vary a factor and keep	Select from a range of	Record and present dat
Begin to make theories	others the same	sources	in a variety of ways –
Provide explanations	Repeat tests and explain	Question others about	tables, bar charts, line
using scientific language	difference	their work	graphs
Use precise scientific	Review work and check	Know the work of some	Order results
language	predictions	scientists	scientifically
Ask relevant questions	Suggest improvements	Count and measure	
	giving reasons	quantities accurately	
		Use sources of	
		information to analyse	

OBSERVATION AND	ENQUIRY, PREDICTION,	DATA COLLECTION	RECORDING
CONCLUSION	TESTING		
CONCLUSION Begin to relate conclusions to patterns, previous knowledge and observational evidence Make judgements and conclusions about what has been seen, and support these with known facts Justify their own theories through observation and conclusion Use straightforward scientific evidence to answer questions or support findings	TESTING Offer explanations for differences Modify tests for accuracy Plan different types of scientific enquiries to answer questions Recognise and control variables Make practical suggestions about working methods and improvements Use results to draw simple conclusions, make predictions for new values, suggest improvements Develop further observations and experiments from results	Gather and classify data in a variety of ways Distinguish and discriminate between different elements of data	Record findings using simple scientific language, drawings, labelled diagrams, keys, bar charts and tables Report on findings from enquiries, including oral and written explanations, displays or presentations of results and conclusions
Evaluate the results of observations Combine observations to give new hypotheses Look for and understand poor data Identify differences, similarities or changes related to simple scientific ideas and processes	Use a range of scientific enquiry to answer questions Use test results to make predictions and to set up further comparative and fair tests	Identify scientific evidence that has been used to support or refute ideas or arguments. Take accurate measurements using a range of equipment, including thermometers, with increasing accuracy and precision Repeat readings when appropriate	Record data and results of increasing complexity using scientific diagrams and labels, classification keys, tables, scatter graphs, bar and line graphs Report and present findings from enquiries, including conclusions, causal relationships and explanations of and degree of trust in results